154 research outputs found

    A behavioral analysis of Greek strike activity

    Get PDF
    This work deals with the analysis of Greek strike activity during the period 1975-1994 based on the data collected by the National Statistical Service of Greece. The work is distinguished into two parts as follows: a. For the industry sector, b. For all the sectors. Conventional strike equations are specified and estimated using the data for all strikes and the effects of the explanatory variables are compared. The study includes several explanatory variables, which have been used by many investigators of strikes. To analyze the aforementioned data, the ARIMA procedure was also used to estimate and forecast models using the methods prescribed by Box and Jenkins (1976). The logarithmic transformation of the data has demonstrated a better behavior of the respective models, fact that it was expected since in a previous work, which was presented in the Fourth Statistical Conference of Greece in Patras 1991, the goodness of fit of the data in the lognormal distribution has been proved.peer-reviewe

    Hybrid self-organizing feature map (SOM) for anomaly detection in cloud infrastructures using granular clustering based upon value-difference metrics

    Get PDF
    We have witnessed an increase in the availability of data from diverse sources over the past few years. Cloud computing, big data and Internet-of-Things (IoT) are distinctive cases of such an increase which demand novel approaches for data analytics in order to process and analyze huge volumes of data for security and business use. Cloud computing has been becoming popular for critical structure IT mainly due to cost savings and dynamic scalability. Current offerings, however, are not mature enough with respect to stringent security and resilience requirements. Mechanisms such as anomaly detection hybrid systems are required in order to protect against various challenges that include network based attacks, performance issues and operational anomalies. Such hybrid AI systems include Neural Networks, blackboard systems, belief (Bayesian) networks, case-based reasoning and rule-based systems and can be implemented in a variety of ways. Traffic in the cloud comes from multiple heterogeneous domains and changes rapidly due to the variety of operational characteristics of the tenants using the cloud and the elasticity of the provided services. The underlying detection mechanisms rely upon measurements drawn from multiple sources. However, the characteristics of the distribution of measurements within specific subspaces might be unknown. We argue in this paper that there is a need to cluster the observed data during normal network operation into multiple subspaces each one of them featuring specific local attributes, i.e. granules of information. Clustering is implemented by the inference engine of a model hybrid NN system. Several variations of the so-called value-difference metric (VDM) are investigated like local histograms and the Canberra distance for scalar attributes, the Jaccard distance for binary word attributes, rough sets as well as local histograms over an aggregate ordering distance and the Canberra measure for vectorial attributes. Low-dimensional subspace representations of each group of points (measurements) in the context of anomaly detection in critical cloud implementations is based upon VD metrics and can be either parametric or non-parametric. A novel application of a Self-Organizing-Feature Map (SOFM) of reduced/aggregate ordered sets of objects featuring VD metrics (as obtained from distributed network measurements) is proposed. Each node of the SOFM stands for a structured local distribution of such objects within the input space. The so-called Neighborhood-based Outlier Factor (NOOF) is defined for such reduced/aggregate ordered sets of objects as a value-difference metric of histogrammes. Measurements that do not belong to local distributions are detected as anomalies, i.e. outliers of the trained SOFM. Several methods of subspace clustering using Expectation-Maximization Gaussian Mixture Models (a parametric approach) as well as local data densities (a non-parametric approach) are outlined and compared against the proposed method using data that are obtained from our cloud testbed in emulated anomalous traffic conditions. The results—which are obtained from a model NN system—indicate that the proposed method performs well in comparison with conventional techniques

    Assessing contingent liabilities in public-private partnerships (PPPs)

    Get PDF

    Gravitational wave spectra from oscillon formation after inflation

    Get PDF
    Theoretical Physic

    p-medicine: a medical informatics platform for integrated large scale heterogeneous patient data

    Get PDF
    Secure access to patient data is becoming of increasing importance, as medical informatics grows in significance, to both assist with population health studies, and patient specific medicine in support of treatment. However, assembling the many different types of data emanating from the clinic is in itself a difficulty, and doing so across national borders compounds the problem. In this paper we present our solution: an easy to use distributed informatics platform embedding a state of the art data warehouse incorporating a secure pseudonymisation system protecting access to personal healthcare data. Using this system, a whole range of patient derived data, from genomics to imaging to clinical records, can be assembled and linked, and then connected with analytics tools that help us to understand the data. Research performed in this environment will have immediate clinical impact for personalised patient healthcare

    No-boundary measure and preference for large e-foldings in multi-field inflation

    Full text link
    The no-boundary wave function of quantum gravity usually assigns only very small probability to long periods of inflation. This was a reason to doubt about the no-boundary wave function to explain the observational universe. We study the no-boundary proposal in the context of multi-field inflation to see whether the number of fields changes the situation. For a simple model, we find that indeed the no-boundary wave function can give higher probability for sufficient inflation, but the number of fields involved has to be very high.Comment: 16 pages, 2 figure

    Non-invasive predictors of axillary lymph node burden in breast cancer: a single-institution retrospective analysis

    Get PDF
    Purpose: Axillary staging is an important prognostic factor in breast cancer. Sentinel lymph node biopsy (SNB) is currently used to stage patients who are clinically and radiologically node-negative. Since the establishment that axillary node clearance (ANC) does not improve overall survival in breast-conserving surgery for patients with low-risk biological cancers, axillary management has become increasingly conservative. This study aims to identify and assess the clinical predictive value of variables that could play a role in the quantification of axillary burden, including the accuracy of quantifying abnormal axillary nodes on ultrasound. Methods: A retrospective analysis was conducted of hospital data for female breast cancer patients receiving an ANC at our centre between January 2018 and January 2020. The reference standard for axillary burden was surgical histology following SNB and ANC, allowing categorisation of the patients under ‘low axillary burden’ (2 or fewer pathological macrometastases) or ‘high axillary burden’ (> 2). After exploratory univariate analysis, multivariate logistic regression was conducted to determine relationships between the outcome category and candidate predictor variables: patient age at diagnosis, tumour focality, tumour size on ultrasound and number of abnormal lymph nodes on axillary ultrasound. Results: One hundred and thirty-five patients were included in the analysis. Logistic regression showed that the number of abnormal lymph nodes on axillary ultrasound was the strongest predictor of axillary burden and statistically significant (P = 0.044), with a sensitivity of 66.7% and specificity of 86.8% (P = 0.011). Conclusion: Identifying the number of abnormal lymph nodes on preoperative ultrasound can help to quantify axillary nodal burden and identify patients with high axillary burden, and should be documented as standard in axillary ultrasound reports of patients with breast cancer
    • …
    corecore